Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 167: 115458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37699319

RESUMO

The Stimulator of Interferon Genes (STING) is predominantly expressed in immune cells, including macrophages, natural killer cells, dendritic cells, and T cells, functioning as a pattern recognition receptor. STING activation upon detecting cytosolic DNA released from damaged cells initiates downstream pathways, leading to the production of inflammatory cytokines such as IFNs, IL-6, and TNF-α. Dysregulated STING activation has been implicated in inflammatory and metabolic diseases. Ischemia/reperfusion injury (I/RI) is common in stroke, acute myocardial infarction, organ transplantation, and surgeries for certain end-stage diseases. Recent studies suggest that STING could be a novel therapeutic target for I/RI treatment. In this review, we provide a concise overview of the cGAS-STING signaling pathway's general functions and summarize STING's role in I/RI across various organs, including the heart, liver, kidney, and lung. Moreover, we explore potential therapeutic approaches for I/RI by targeting STING.

2.
Front Immunol ; 14: 1190707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583703

RESUMO

Background: Stimulation of IFN genes (STING) is central to the production of interferon and proinflammatory cytokines in response to microbial DNA or self-DNA in the cytosol. The detrimental role of the activation of STING during sepsis has been well documented. Methods: Here, we found that gelsevirine (GS) potently inhibit interferon and inflammatory cytokine induction in macrophages exposed to STING agonists (2'3'-cGAMP, IFN stimulatory DNA (ISD), and poly(dA:dT)). I n silico docking analysis and surface plasmon resonance binding study showed that GS bonds with high affinity to the cyclic dinucleotide (CDN)-binding pocket of STING. Biotin pull-down assay also confirmed that GS competitively bonded to STING protein. Furthermore, GS inhibited 2'3'-cGAMP-induced STING dimerization and subsequent activation. In addition, GS induced K48-linked STING ubiquitination and degradation, which was likely through upregulating and recruiting TRIM21. In mice exposed to cecal ligation and puncture (CLP)-induced sepsis, post-operative administration of GS significantly extended the survival period and mitigated acute organ damage. Results: Overall, GS inhibited STING signaling by competitively binding to the CDN-binding pocket to lock STING in an inactive open conformation, while also promoting K48-linked STING ubiquitination and degradation. Conclusions: Our findings identify a novel STING-specific inhibitor that could be applied in the treatment of sepsis.


Assuntos
Sepse , Camundongos , Animais , Sepse/tratamento farmacológico , Sepse/metabolismo , Inflamação/tratamento farmacológico , Citocinas , Transdução de Sinais , Interferons
3.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446216

RESUMO

Hypothermia is a promising clinical therapy for acute injuries, including neural damage, but it also faces practical limitations due to the complexities of the equipment and procedures required. This study investigates the use of the A1 adenosine receptor (A1AR) agonist N6-cyclohexyladenosine (CHA) as a more accessible method to induce steady, torpor-like hypothermic states. Additionally, this study investigates the protective potential of CHA against LPS-induced sepsis and neuroinflammation. Our results reveal that CHA can successfully induce a hypothermic state by activating a neuronal circuit similar to the one that induces physiological torpor. This state is characterized by maintaining a steady core body temperature below 28 °C. We further found that this torpor-like state effectively mitigates neuroinflammation and preserves the integrity of the blood-brain barrier during sepsis, thereby limiting the infiltration of inflammatory factors into the central nervous system. Instead of being a direct effect of CHA, this protective effect is attributed to inhibiting pro-inflammatory responses in macrophages and reducing oxidative stress damage in endothelial cells under systemic hypothermia. These results suggest that A1AR agonists such as CHA could potentially be potent neuroprotective agents against neuroinflammation. They also shed light on possible future directions for the application of hypothermia-based therapies in the treatment of sepsis and other neuroinflammatory conditions.


Assuntos
Fármacos Cardiovasculares , Hipotermia , Torpor , Humanos , Hipotermia/induzido quimicamente , Células Endoteliais , Doenças Neuroinflamatórias , Agonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor Purinérgico P1
4.
Front Immunol ; 14: 1164278, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063929

RESUMO

Stroke, especially ischemic stroke, is an important cause of neurological morbidity and mortality worldwide. Growing evidence suggests that the immune system plays an intricate function in the pathophysiology of stroke. Gelsevirine (Gs), an alkaloid from Gelsemium elegans, has been proven to decrease inflammation and neuralgia in osteoarthritis previously, but its role in stroke is unknown. In this study, the middle cerebral artery occlusion (MCAO) mice model was used to evaluate the protective effect of Gs on stroke, and the administration of Gs significantly improved infarct volume, Bederson score, neurobiological function, apoptosis of neurons, and inflammation state in vivo. According to the data in vivo and the conditioned medium (CM) stimulated model in vitro, the beneficial effect of Gs came from the downregulation of the over-activity of microglia, such as the generation of inflammatory factors, dysfunction of mitochondria, production of ROS and so on. By RNA-seq analysis and Western-blot analysis, the JAK-STAT signal pathway plays a critical role in the anti-inflammatory effect of Gs. According to the results of molecular docking, inhibition assay, and thermal shift assay, the binding of Gs on JAK2 inhibited the activity of JAK2 which inhibited the over-activity of JAK2 and downregulated the phosphorylation of STAT3. Over-expression of a gain-of-function STAT3 mutation (K392R) abolished the beneficial effects of Gs. So, the downregulation of JAK2-STAT3 signaling pathway by Gs contributed to its anti-inflammatory effect on microglia in stroke. Our study revealed that Gs was benefit to stroke treatment by decreasing neuroinflammation in stroke as a potential drug candidate regulating the JAK2-STAT3 signal pathway.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Isquemia Encefálica/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias , Simulação de Acoplamento Molecular , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico
5.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36297353

RESUMO

Non-alcoholic fatty liver disease (NAFLD), an important chronic disease, is one of the major causes of high mortality and creates a substantial financial burden worldwide. The various immune cells in the liver, including macrophages, NK cells, dendritic cells, and the neutrophils involved in the innate immune response, trigger inflammation after recognizing the damage signaled from infection or injured cells and tissues. The stimulator of interferon genes (STING) is a critical molecule that binds to the cyclic dinucleotides (CDNs) generated by the cyclic GMP-AMP synthase (cGAS) to initiate the innate immune response against infection. Previous studies have demonstrated that the cGAS-STING pathway plays a critical role in inflammatory, auto-immune, and anti-viral immune responses. Recently, studies have focused on the role of STING in liver diseases, the results implying that alterations in its activity may be involved in the pathogenesis of liver disorders. Here, we summarize the function of STING in the development of NAFLD and present the current inhibitors and agonists targeting STING.

6.
Front Nutr ; 9: 921037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811983

RESUMO

Objectives: The first objective of this study was to probe the effects of genkwanin (GKA) on osteoclast. The second goal of this study was to study whether GKA can protect lipopolysaccharide (LPS) and ovariectomized (OVX) induced bone loss. Materials and Methods: Various concentrations of GKA (1 and 10 mg/kg) were injected into mice. Different concentrations of GKA (1 and 5 µM) were used to detect the effects of GKA on osteoclast and osteoblast. Key Findings: GKA attenuated the osteoclast differentiation promoted by RANKL and expression of marker genes containing c-fos, ctsk as well as bone resorption related gene Trap and to the suppression of MAPK signaling pathway. In addition, GKA induced BMMs cell apoptosis in vitro. Moreover, GKA prevented LPS-induced and ovariectomized-induced bone loss in mice. Conclusion: Our research revealed that GKA had a potential to be an effective therapeutic agent for osteoclast-mediated osteoporosis.

7.
Biochem Pharmacol ; 198: 114975, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202579

RESUMO

Low-grade and chronic inflammation is recognized as an important mediator of the pathogenesis of osteoarthritis (OA). The aim of current work was to test the therapeutic effects of gelsevirine on age-related and surgically induced OA in mice and elucidate the underlying mechanism. The in vitro studies revealed that gelsevirine treatment mitigated IL-1ß-induced inflammatory response and degeneration in cultured chondrocytes, evidenced by reduced apoptosis and expression of MMP3, MMP9, MMP13, IFNß, TNFɑ, and Il6, and increased expression of Col2A and Il10. Furthermore, gelsevirine treatment in IL-1ß-stimulated chondrocytes reduced the protein expression of stimulator of IFN genes (STING, also referred to Tmem173) and p-TBK1. Importantly, gelsevirine treatment did not provide further protection in STING-deficient chondrocytes against IL-1ß stimulation. The in vivo studies revealed that gelsevirine treatment mitigated articular cartilage destruction in age-related and destabilization of the medial meniscus (DMM)-induced OA. Similarly, gelsevirine treatment did not provide further beneficial effects against OA in STING deficient mice. Mechanistically, gelsevirine promoted STING K48-linked poly-ubiquitination and MG-132 (a proteasome inhibitor) reversed the inhibitive effects of gelsevirine on IL-1ß-induced activation of STING/TBK1 pathway in chondrocytes. Collectively, we identify that gelsevirine targets STING for K48 ubiquitination and degradation and improves age-related and surgically induced OA in mice.


Assuntos
Cartilagem Articular , Proteínas de Membrana , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo
8.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678499

RESUMO

One effective treatment for postmenopausal osteoporosis is to inhibit osteoclasts and subsequent bone resorption. In our study, we demonstrated that acacetin, a flavone with potential therapeutic effects in infections, cancers, and several metabolic disorders, inhibited osteoclast differentiation and bone resorption in vitro. For improving the efficacy of acacetin in vivo, we developed an acid-sensitive bone-targeting delivery system composed of an acid-sensitive linker (N-ε-maleimidocaproic acid hydrazide, EMCH) for ensuring an effective release of acacetin at the site of action and a hydrophilic aspartic acid hexapeptide ((Asp)6, D6) as the effective bone targeting agent. Our results revealed that Acacetin-EMCH-D6 specifically bound to the bone surface once administrated in vivo, prolonged the retention time in bone and released acacetin at the osteoclastic bone resorption sites where the acidity is higher. We further demonstrated that, in ovariectomy-induced osteoporosis mice, treatment with Acacetin-EMCH-D6 inhibited osteoclast formation and increased trabecular bone mass. On the contrary, neither acacetin nor EMCH-D6 with the same dosage alone showed significant anti-osteoporosis effects in vivo. Mechanistically, targeted delivery of acacetin to the bone resorption sites by Acacetin-EMCH-D6 inhibited autophagy through activating PI3K/AKT/mTOR pathway in osteoclasts, while the activation of autophagy by rapamycin partially reversed the inhibitory effects of acacetin in vitro and in vivo. In summary, our study, for the first time, showed that the acid-sensitive bone-targeting delivery system carrying acacetin was effective for the treatment of postmenopausal osteoporosis. Thus, targeted delivery of acacetin using Acacetin-EMCH-D6 to bone resorption sites is a promising therapy for osteoporosis.

9.
Biochem Pharmacol ; 188: 114541, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812857

RESUMO

The acute phase response, as a component of the innate immune system, is part of the first line of defense against invading pathogens. The Stimulator of Interferon Genes (STING) pathway initiates innate immune responses upon recognition of exogenous bacterial and viral DNA. However, whether STING signaling pathway plays any roles in regulating acute phase response during bacterial infection remains unknown. In this study, we used STING-deficient (Tmem173gt) and wildtype mice to investigate acute phase responses to bacterial infection (Escherichia coli, E. coli) and test the effect of exogenous cyclic GMP-AMP (cGAMP, a STING agonist) treatment. Bacterial infection of STING-deficient mice resulted in an increase in mortality and bacterial dissemination. Also, inflammation-induced acute phase response was drastically reduced in STING-deficient mice, showing significant reduction in expression of cytokine TNF-α and acute phase proteins. In contrast, exogenous cGAMP treatment enhanced inflammation-induced acute phase response by increasing the expression of TNF-α and acute phase proteins. Also, cGAMP accelerated bacterial clearance and improved survival rate of wildtype mice, but not STING-deficient mice. Interestingly, cGAMP treatment mitigated bacterial infection induced liver injury in both wildtype and STING-deficient mice. Further in vitro evidence showed that cGAMP treatment retarded TNF-α-mediated hepatocyte apoptosis, potentially accelerating autophagy. Taken together, our results indicated that cGAMP/STING signaling pathway is critical for organism to initiate blood-borne innate immune-responses to defend bacterial infection, and cGAMP is envisaged as a drug candidate for further clinical trial.


Assuntos
Reação de Fase Aguda/metabolismo , Reação de Fase Aguda/prevenção & controle , AMP Cíclico/administração & dosagem , GMP Cíclico/administração & dosagem , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/prevenção & controle , Proteínas de Membrana/deficiência , Reação de Fase Aguda/genética , Animais , Escherichia coli , Infecções por Escherichia coli/genética , Hepatócitos/metabolismo , Hepatócitos/microbiologia , Masculino , Proteínas de Membrana/agonistas , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...